miércoles, 25 de mayo de 2011

4.5 Serie de Taylor.

En matemáticas, una serie de Taylor de una función f(x) infinitamente derivable (real o compleja) definida en un intervalo abierto (a-r, a+r) se define como la siguiente suma:


sin(x) y aproximaciones de Taylor centradas en 0, con polinomios de grado 1, 3, 5, 7, 9, 11 y 13.

La función exponencial (en azul), y la suma de los primeros n+1 términos de su serie de Taylor en torno a cero (en rojo).
 f(x) = \sum_{n=0}^{\infin} \frac{f^{(n)}(a)}{n!} (x-a)^{n}

 

Definición

La serie de Taylor de una función f de números reales o complejos que es infinitamente diferenciable en un entorno de números reales o complejos a, es la serie de potencias:

f(x) = f(a)+\frac{f'(a)}{1!}(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f^{(3)}(a)}{3!}(x-a)^3+\cdots
que puede ser escrito de una manera más compacta como

f(x) = \sum_{n=0}^{\infin} \frac{f^{(n)}(a)}{n!} (x-a)^{n}\,,
donde n! es el factorial de n y f (n)(a) denota la n-ésima derivada de f en el punto a; la derivada cero de f es definida como la propia f y (xa)0 y 0! son ambos definidos como uno.

Series de Maclaurin (Taylor alrededor de 0) notables


La función coseno.

Una aproximación de octavo orden de la función coseno en el plano de los complejos.

Las dos imágenes de arriba puestas juntas.
A continuación se enumeran algunas series de Taylor de funciones básicas. Todos los desarrollos son también válidos para valores complejos de x.

Función exponencial y logaritmo natural

e^{x} = \sum^{\infin}_{n=0} \frac{x^n}{n!}\quad, \forall x; n \in \mathbb{N}_0
\ln(1+x) = \sum^{\infin}_{n=1} \frac{(-1)^{n+1}}n x^n\quad\mbox{, para } \left| x \right| < 1

 Serie geométrica

\frac{1}{1-x} = \sum^{\infin}_{n=0} x^n\quad\mbox{ para } \left| x \right| < 1

Teorema del binomio

(1+x)^\alpha = \sum^{\infin}_{n=0} \frac{\Gamma(\alpha+1)}{\Gamma(n+1)\Gamma(n-\alpha)}
x^n\quad para \left| x \right| < 1\quad
y cualquier \alpha\quad complejo

Funciones trigonométricas

\sin x = \sum^{\infin}_{n=0} \frac{(-1)^n}{(2n+1)!} x^{2n+1}\quad, \forall x
\cos x = \sum^{\infin}_{n=0} \frac{(-1)^n}{(2n)!} x^{2n}\quad, \forall x
\tan x = \sum^{\infin}_{n=20} \frac{B_{2n} (-4)^n (1-4^n)}{(2n)!} x^{2n-1}\quad, \mbox{ para } \left| x \right| < \frac{\pi}{2}
Donde Bs son los Números de Bernoulli.
\sec x = \sum^{\infin}_{n=0} \frac{(-1)^n E_{2n}}{(2n)!} x^{2n}\quad\mbox{, para } \left| x \right| < \frac{\pi}{2}
\csc{x}=\sum_{n=1}^\infty{\frac{2(2^{2n-1}-1)B_{n}x^{2n-1}}{(2n)!}}\quad\mbox{, para } 0<\left |{x}\right |< \pi
\arcsin x = \sum^{\infin}_{n=0} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}\quad\mbox{, para } \left| x \right| < 1
\arctan x = \sum^{\infin}_{n=0} \frac{(-1)^n}{2n+1} x^{2n+1}\quad\mbox{, para } \left| x \right| < 1

Funciones hiperbólicas

\sinh x = \sum^{\infin}_{n=0} \frac{1}{(2n+1)!} x^{2n+1}\quad , \forall x
\cosh x = \sum^{\infin}_{n=0} \frac{1}{(2n)!} x^{2n}\quad , \forall x
\tanh x = \sum^{\infin}_{n=1} \frac{B_{2n} 4^n (4^n-1)}{(2n)!} x^{2n-1}\quad\mbox{, para } \left| x \right| < \frac{\pi}{2}
\sinh^{-1} x = \sum^{\infin}_{n=0} \frac{(-1)^n (2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}\quad\mbox{, para } \left| x \right| < 1
\tanh^{-1} x = \sum^{\infin}_{n=0} \frac{1}{2n+1} x^{2n+1}\quad\mbox{, para } \left| x \right| < 1

Función W de Lambert

W_0(x) = \sum^{\infin}_{n=1} \frac{(-n)^{n-1}}{n!} x^n\quad\mbox{, para } \left| x \right| < \frac{1}{e}
Los números Bk que aparecen en los desarrollos de tan(x) y tanh(x) son Números de Bernoulli. Los valores C(α,n) del desarrollo del binomio son los coeficientes binomiales. Los Ek del desarrollo de sec(x) son Números de Euler.

Varias variables

La serie de Taylor se puede generalizar a funciones de d variables:

\sum_{n_1=0}^{\infin} \cdots \sum_{n_d=0}^{\infin}
\frac{\partial^{n_1}}{\partial x_1^{n_1}} \cdots \frac{\partial^{n_d}}{\partial x_d^{n_d}}
\frac{f(a_1,\cdots,a_d)}{n_1!\cdots n_d!}
(x_1-a_1)^{n_1}\cdots (x_d-a_d)^{n_d} =

\sum_{n=0}^{\infty} {1 \over n!} \sum_{n_1+\cdots+n_d=n} {n \choose n_1 \cdots n_d} {\partial^n 
f(a_1,\cdots,a_d) \over \partial x_1^{n_1} \cdots \partial x_d^{n_d}} 
(x_1-a_1)^{n_1}\cdots (x_d-a_d)^{n_d},
donde {n \choose n_1 \cdots n_d} es un coeficiente multinomial. Como ejemplo, para una función de 2 variables, x e y, la serie de Taylor de segundo orden en un entorno del punto (a, b) es:
f(x,y) \,
\approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b) \,
+ \frac{1}{2}\left( f_{xx}(a,b)(x-a)^2 + 2f_{xy}(a,b)(x-a)(y-b) + f_{yy}(a,b)(y-b)^2 \right).
Un polinomio de Taylor de segundo grado puede ser escrito de manera compacta así:

T(\mathbf{x}) = f(\mathbf{a}) + \nabla f(\mathbf{a})^T (\mathbf{x} - \mathbf{a}) + \frac{1}{2} (\mathbf{x} - \mathbf{a})^T \nabla^2 f(\mathbf{a}) (\mathbf{x} - \mathbf{a}) + \cdots
donde \nabla f(\mathbf{a}) es el gradiente y \nabla^2 f(\mathbf{a}) es la matriz hessiana. Otra forma:

T(\mathbf{x}) = \sum_{|\alpha| \ge 0}^{}{\frac{\mathrm{D}^{\alpha}f(\mathbf{a})}{\alpha !}(\mathbf{x}-\mathbf{a})^{\alpha}}

Aplicaciones

Además de la obvia aplicación de utilizar funciones polinómicas en lugar de funciones de mayor complejidad para analizar el comportamiento local de una función, las series de Taylor tienen muchas otras aplicaciones.
Algunas de ellas son: análisis de límites y estudios paramétricos de los mismos, estimación de números irracionales acotando su error, teorema de L'Hopital para la resolución de límites indeterminados, estudio de puntos estacionarios en funciones (máximos o mínimos relativos o puntos sillas de tendencia estrictamente creciente o decreciente), estimación de integrales, determinación de convergencia y suma de algunas series importantes, estudio de orden y parámetro principal de infinitésimos, etc.

Referencias

  1. Kline, M. (1990) Mathematical Thought from Ancient to Modern Times. Oxford University Press. pp. 35-37.
  2. Boyer, C. and Merzbach, U. (1991) A History of Mathematics. John Wiley and Sons. pp. 202-203.
  3. «Neither Newton nor Leibniz - The Pre-History of Calculus and Celestial Mechanics in Medieval Kerala». MAT 314. Canisius College



No hay comentarios.: